US009058299B2

a2 United States Patent 10) Patent No.: US 9,058,299 B2
Baron et al. 45) Date of Patent: Jun. 16, 2015
(54) EFFICIENT COPYING BETWEEN STORAGE (56) References Cited
DEVICES
U.S. PATENT DOCUMENTS
(71) Applicants:Ay.al Ba.rOI.l, Kiryat Ono (IL); Saggi Y. 8,135,930 B1* 3/2012 Mattox et al. ...cocooov...... T11/162
Mizrahi, Fierberg (IL) 8,250,033 B1* 82012 De Souteretal. 707/637
8,417,907 B2* 4/2013 Urkudeetal. 71162
(72) Inventors: Ayal Baron, Kiryat Ono (IL); Saggi Y. 8,656,123 Bz: 22014 Lee .. 7117162
Mizrahi, Fierberg (IL) 2006/0085610 Al 4/2006 Iwgmur_a et al. . 71162
> 23] 2006/0236047 Al* 10/2006 Shitomi 71162
2010/0057789 Al* 3/2010 Kawaguchi 707/204
(73) Assignee: Red Hat Israel, Ltd., Raanana (IL) 2010/0082921 Al* 4/2010 Thompsonetal. 711/162
2011/0029748 Al* 2/2011 Nakamura etal. .. . 71162
. 2012/0066677 Al* 3/2012 Tangcccovineveennn. 718/1
(*) Notice: Subject to any disclaimer, the term of this 201210079221 AL* 32012 Sivasubramanian et i 711/162
patent is extended or adjusted under 35 2013/0024635 Al* 1/2013 Arakicccooovrrrvrnnnn. 711/162
U.S.C. 154(b) by 217 days. 2013/0042083 Al* 2/2013 Mutalik et al. 711/162
2013/0282662 Al* 10/2013 Kumarasamy et al. 707/649
Y
(21) Appl. No.: 13/736,810 * cited by examiner
(22) Filed: Jan. 8, 2013 Primary Examiner — Hal Schnee
(74) Attorney, Agent, or Firm — Lowenstein Sandler LLP
65 Prior Publication Data
63) 57 ABSTRACT
US 2014/0195752 Al Jul. 10, 2014 A system and method are disclosed for efficiently copy a disk
image between storage devices. In accordance with one
2 2
(51) Int.CL example, a computer system issues a request to create on a
GO6F 11/14 (2006.01) first storage device a snapshot of a first disk image that is
GOGF 12/08 (2006.01) stored on the first storage device. The computer system then
(52) U.S.CL issues a request to create on the first storage device a second
CPC ... GOGF 11/1466 (2013.01); GO6F 11/1451 disk image based on the snapshot, and copies the snapshot on
(2013.01); GO6F 11/1456 (2013.01); GOGF to a second storage device. The computer system issues a
2201/815 (2013.01); GO6F 2201/84 (2013.01) request to create on the second storage device a third disk
(58) Field of Classification Search image based on the snapshot. The computer system then

issues a request to compute a difference between the second

CPC o GOGF 12/%26 61(3}(;?1/31 }51/608’(}0(}60136 1; 11/1/4154 l’ disk image and the snapshot, and the difference is overwritten
> on to the third disk image.
USPC ittt 711/162
See application file for complete search history. 17 Claims, 3 Drawing Sheets
/ 200

START

Create on First Storage Device a Snapshot of a 201
First Disk Image That is Stored on the First Storage Device i
Create on Flrst Storage Device a Second Disk Image Based on Snapshot ’_\}02

!

Copy Snapshot to a Second Storage Device '\1203

!

Create on Second Storage Device a Third Disk Image Based on Snapshot 204

!

Compute Difference Batween Seccnd Disk Image and Snapshot I~/ 205
Overwrite the Difference on to the Third Disk Image I~ 206

US 9,058,299 B2

Sheet 1 of 3

Jun. 16, 2015

U.S. Patent

¥8b
JOVHOLS
J3aHOVLLY
HHOMLIN

g8l
JOVHOLS
(J3HOVLLY
HHOMLIN

H

H

06} YHOMLAN
\
a8F 181 [0T
301A3d 30IA3d AHOWAW ndo
JOVHOLS 39VH0OLS NIV
8l
HIOVYNYI TZT HOSIAYIdAH
A9VIAI ASIa
021 SO LSOH
A
A 4
(33
ANIHOVIN
WNLHIA

01 WALSAS ¥31NdWOD

U.S. Patent Jun. 16, 2015 Sheet 2 of 3 US 9,058,299 B2

‘//200

START

Create on First Storage Device a Snapshot of a 201
First Disk Image That is Stored on the First Storage Device

:

Create on First Storage Device a Second Disk Image Based on Snapshot

:

Copy Snapshot to a Second Storage Device N 203

'

Create on Second Storage Device a Third Disk Image Based on Snapshot [~u 204

:

202
~

Compute Difference Between Second Disk Image and Snapshot ~ 205
Overwrite the Difference on to the Third Disk Image ™~ 206
END

FIG. 2

U.S. Patent Jun. 16, 2015 Sheet 3 of 3 US 9,058,299 B2

A / 300

7 302 V= 310
PROCESSOR
-t ! |¢————— | VIDEO DISPLAY
INSTRUCTIONS N, 326
308
— 304 — 312
MAIN MEMORY
< > ALPHA-NUMERIC
e
INSTRUCTIONY| ", 306 INPUT DEVICE
= 306 V= 314
CURSOR
STATIC MEMORY |[—————p» |—————p CONTROL
DEVICE
2]
>
(aa]
322 / 316
NETWORK DRIVE UNIT
INTERFACE |t—————p COMPUTER
DEVICE -
READABLE MEDIUM [T~ 34
INSTRUCTIONS (] 326
320
SIGNAL
GENERATION
DEVICE

FIG. 3

US 9,058,299 B2

1
EFFICIENT COPYING BETWEEN STORAGE
DEVICES

TECHNICAL FIELD

This disclosure relates to computer systems, and more
particularly, to copying data from one storage device to
another storage device.

BACKGROUND

A virtual machine (VM) is a portion of software that, when
executed on appropriate hardware, creates an environment
allowing the virtualization of an actual physical computer
system (e.g., a server, a mainframe computer, etc.). The actual
physical computer system is typically referred to as a “host
machine” or a “physical machine,” and the operating system
of the host machine is typically referred to as the “host oper-
ating system.”

A virtual machine may function as a self-contained plat-
form, executing its own “guest” operating system and soft-
ware applications. Typically, software on the host machine
known as a “hypervisor” (or a “virtual machine monitor”)
manages the execution of one or more virtual machines, pro-
viding a variety of functions such as virtualizing and allocat-
ing resources, context switching among virtual machines, etc.

A virtual machine may comprise one or more “virtual
processors,” each of which maps, possibly in a many-to-one
fashion, to a central processing unit (CPU) of the host
machine. Similarly, a virtual machine may comprise one or
more “virtual devices,” each of which maps, typically in a
one-to-one fashion, to a device of the host machine (e.g., a
network interface device, a CD-ROM drive, a hard disk, a
solid-state drive, etc.). The hypervisor manages these map-
pings in a transparent fashion, thereby enabling the guest
operating system and applications executing on the virtual
machine to interact with the virtual processors and virtual
devices as though they were actual physical entities.

A disk image is a single file or storage device containing
the complete contents and structure representing a data stor-
age medium or device, such as a hard drive, tape drive, floppy
disk, optical disc, or USB flash drive. A disk image may be
created by creating a complete sector-by-sector copy of the
source medium, thereby replicating the structure and contents
of a storage device.

In a virtualized system, a disk image is interpreted by the
hypervisor as a system hard disk drive. Typically the disk
image is named for the particular hypervisor; for example, a
disk image for VMware™ vSphere™ typically has the exten-
sion .vimdk, a disk image for Xen™ and Microsoft™ Hyper-
V™ typically has the extension .vhd, and a disk image for
Oracle™ VM VirtualBox™ typically has the extension .vdi.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure is illustrated by way of example,
and not by way of limitation, and can be more fully under-
stood with reference to the following detailed description
when considered in connection with the figures in which:

FIG.1 depicts an illustrative computer system architecture,
in accordance with an example of the present disclosure.

FIG. 2 depicts a flow diagram of one example of a method
for efficiently copying a disk image between storage devices.

FIG. 3 depicts a block diagram of an illustrative computer
system operating in accordance with examples of the disclo-
sure.

10

15

20

25

30

35

40

45

50

55

60

2
DETAILED DESCRIPTION

Described herein is a system and method for efficiently
copy a disk image from one storage device to another storage
device. In accordance with one example, a snapshot of a first
disk image that is stored on a first storage device is created on
the first storage device. A second disk image is then created on
the first storage device based on the snapshot, so that the
second disk image captures what the state of the first disk
image was at the time of the snapshot. (The first disk image
may have changed since the snapshot was taken.) The snap-
shot is then copied to a second storage device, and a third disk
image is created on the second storage device based on the
snapshot, so that the third disk image captures what the state
of'the first disk image was at the time of the snapshot, just as
was the case when the second disk image was initially created
on the first storage device. A difference between the snapshot
and the second disk image, which may have changed since it
was created based on the snapshot, is computed. The differ-
ence is then overwritten on to the third disk image stored on
the second storage device.

Examples of the present disclosure thus enable up-to-date
disk images to be efficiently copied from one storage device
to another storage device. In contrast, in virtualized systems
of the prior art, the entire disk image is copied between
storage devices. Moreover, examples of the present disclo-
sure enable efficient copying of virtual disks of a virtual
machine without requiring shutdown of the virtual machine.

FIG. 1 depicts an illustrative architecture of the salient
elements of a computer system 100, in accordance with some
embodiments. It should be noted that other architectures for
computer system 100 are possible, and that the present dis-
closure is not necessarily limited to the specific architecture
depicted by FIG. 1.

As shown in FIG. 1, the computer system 100 is connected
to a network 150 and comprises central processing units
(CPU) 160, main memory 170, which may include volatile
memory devices (e.g., random access memory (RAM)), non-
volatile memory devices (e.g., flash memory), and/or other
types of memory devices, storage devices 181 and 182 (each
of'which may be a magnetic hard disk, a Universal Serial Bus
[USB] solid state drive, etc.), and network-attached storage
devices 183 and 184. The computer system 100 may be a
server, a mainframe, a workstation, a personal computer
(PC), a mobile phone, a palm-sized computing device, etc.
The network 150 may be a private network (e.g., a local area
network (LAN), a wide area network (WAN), intranet, etc.) or
a public network (e.g., the Internet).

It should be noted that the fact that there are two storage
devices 181 and 182 and two network-attached storage
devices 183 and 184 is merely illustrative, and in some other
examples there may be a different number of storage devices
and network-attached storage devices. The configuration
depicted in FIG. 1, however, enables copying from a storage
device to a network-attached storage device, or from a net-
work-attached storage device to a storage device, or between
two storage devices, or between two network-attached stor-
age devices. Similarly, although a single CPU is depicted in
FIG. 1, in some other examples computer system 100 may
comprise a plurality of CPUs.

Computer system 100 runs a host operating system (OS)
120 that manages the hardware resources of the computer
system and provides functions such as interprocess commu-
nication, scheduling, virtual memory management, and so
forth. In one example, host operating system 120 also com-
prises a hypervisor 125, which provides a virtual operating
platform for one or more virtual machines 130 and manages

US 9,058,299 B2

3

execution of one or more virtual machines 130. In accordance
with this example, hypervisor 125 includes a disk image
manager 128 that is capable of creating a snapshot of a disk
image (e.g., a file that captures the entire state of the disk
image at a particular point in time), of creating new disk
images based on snapshots, of copying snapshots between
storage devices (e.g., from storage device 181 to storage
device 182, from storage device 181 to network-attached
storage device 183, from network-attached storage device
183 to network-attached storage device 184, etc.), and of
computing differences between snapshots and disk images.
Some operations of disk image manager 128 are described in
detail below with respect to the method of FIG. 2.

It should be noted that in some alternative examples, hyper-
visor 125 may be external to host OS 120, rather than embed-
ded within host OS 120. It should further be noted that in
examples where disk image manager 128 is responsible only
for managing disk images unrelated to virtual machines, disk
image manager 128 may be a module of host OS 120, rather
than a module of hypervisor 125.

Virtual machine 130 is a software implementation of a
machine that executes programs as though it were an actual
physical machine. Virtual machine 130 comprises a guest
operating system that manages the execution of programs
within the virtual machine, as well as one or more virtual
processors that are mapped by hypervisor 125 to physical
CPU(s) 160 of computer system 100. It should be noted that
although, for simplicity, a single virtual machine is depicted
in FIG. 1, in some other examples computer system 100 may
host a plurality of virtual machines.

FIG. 2 depicts a flow diagram of one example of a method
200 for efficiently copying a disk image between storage
devices. The method is performed by processing logic that
may comprise hardware (circuitry, dedicated logic, etc.), soft-
ware (such as is run on a general purpose computer system or
a dedicated machine), or a combination of both. In one
example, the method is performed by the computer system
100 of FIG. 1, while in some other examples, some or all of
the method might be performed by another machine. It should
be noted that blocks depicted in FIG. 2 can be performed
simultaneously or in a different order than that depicted.

Atblock 201, a snapshot of a first disk image that is stored
on a first storage device is created on the first storage device.
The snapshot thus captures the state of the first disk image at
the time that the snapshot is created. In some embodiments,
block 201 may be performed in response to an administrator
submitting a command to computer system 100 (e.g., via a
graphical user interface [GUI], etc.) to copy the first disk
image from the first storage device to a second storage device,
while in some other embodiments, block 201 may be per-
formed as part of a scheduled job to copy the first disk image
from the first storage device to a second storage device, while
in yet other embodiments, block 201 may be performed in
response to some other event (e.g., the starting of a virtual
machine, etc.).

In one example, when the first storage device supports
native snapshotting (e.g., a capability by which the storage
device can create snapshots) the disk image manager 128
issues a request (e.g., a dedicated command, etc.) to a native
snapshotting module on the first storage device to create the
snapshot. Alternatively (e.g., when the first storage device
lacks a native snapshotting capability, etc.), the disk image
manager 128 may issue a request to hypervisor 125 or host OS
120 to create the snapshot. In one example, disk image man-
ager 128 may issue a query to the first storage device to
determine whether the first storage device supports native

20

30

40

45

4

snapshotting. In another example, disk image manager 128
may obtain this information from hypervisor 125 or host OS
120.

It should be noted that the first disk image may be a virtual
disk of a virtual machine (e.g., VM 130, etc.), or may be
unrelated to virtual machines (e.g., a conventional disk image
of'a hard drive, etc.). It should further be noted that when the
first disk image is a virtual disk of a virtual machine, the
creation of the snapshot at block 201 does not require shut-
down of the virtual machine. It should further be noted that
the first storage device may be either a network-attached
storage device (e.g., network-attached storage device 183,
network-attached storage device 184, etc.) or a storage device
local to computer system 100 (e.g., storage device 181, stor-
age device 182, etc.).

At block 202, a second disk image is created on the first
storage device based on the snapshot. In one example, disk
image manager 128 issues a request to hypervisor 125 or host
OS 120 to create the second disk image from the snapshot. At
this point, the second disk image is an exact copy of the first
disk image at the time that the snapshot was taken.

At block 203, the snapshot is copied to a second storage
device, which is the target device for copying of the first disk
image from the first storage device. In one example, disk
image manager 128 issues a request to hypervisor 125 or host
OS 120 to copy the snapshot to the second storage device. In
one example, when the second storage device supports native
snapshotting, the copying of the snapshot comprises creating,
by the second storage device, a native snapshot of the first disk
image on the second storage device. In one such example,
disk image manager 128 issues a request to the second storage
device to create the native snapshot of the first disk image on
the second storage device.

Alternatively (e.g., when the second storage device lacks a
native snapshotting capability, etc.), the copying of the snap-
shot to the second storage device comprises creating a struc-
ture on the second storage device. In one embodiment, the
structure may be in a native Quick EMUlator (QEMU) Copy
On Write (or “QCOW?”) disk imaging format, which includes
atable that indicates which logical portions of the image have
been written and the physical mapping of the logical portions
to the file. In one example, the table is represented as two
arrays, where the first array is a list of logical addresses and
the second array is a list of data stored in the corresponding
logical addresses. In the case where data is read from a logical
address that is not known, it is searched on a backing file, if
such a file exists; otherwise, an empty block is returned.

Inone example, disk image manager 128 issues a request to
hypervisor 125 or host OS 120 to create the structure on the
second storage device. It should be noted that the second
storage device, like the first storage device, may be either a
network-attached storage device (e.g., network-attached stor-
age device 183, network-attached storage device 184, etc.) or
a storage device local to computer system 100 (e.g., storage
device 181, storage device 182, etc.).

At block 204, a third disk image is created on the second
storage device based on the snapshot. At this point, the third
disk image is an exact copy of the first disk image at the time
that the snapshot was taken.

At block 205, a difference between the second disk image
and the snapshot is computed. This difference captures any
changes that have occurred to the second disk image (e.g.,
state changes, configuration changes, etc.) since it was cre-
ated from the snapshot. In one example, disk image manager
128 issues a request to the first storage device to compute the
difference (e.g., when the first storage device has a capability
for computing such differences), while in another example,

US 9,058,299 B2

5

disk image manager 128 issues a request to hypervisor 125 or
host OS 120 to compute the difference.

At block 206, the difference computed at block 206 is
overwritten on to the third disk image stored on the second
storage device. The result is that the third disk image is now an
exact copy of the second disk image, without re-copying the
entire second disk image from the first storage device to the
second storage device.

FIG. 3 illustrates an illustrative computer system within
which a set of instructions, for causing the machine to per-
form any one or more of the methodologies discussed herein,
may be executed. In alternative examples, the machine may
be connected (e.g., networked) to other machines in a LAN,
an intranet, an extranet, or the Internet. The machine may
operate in the capacity of a server machine in client-server
network environment. The machine may be a personal com-
puter (PC), a set-top box (STB), a server, a network router,
switch or bridge, or any machine capable of executing a set of
instructions (sequential or otherwise) that specify actions to
be taken by that machine. Further, while only a single
machine is illustrated, the term “machine” shall also be taken
to include any collection of machines that individually or
jointly execute a set (or multiple sets) of instructions to per-
form any one or more of the methodologies discussed herein.

The illustrative computer system 300 includes a processing
system (processor) 302, a main memory 304 (e.g., read-only
memory (ROM), flash memory, dynamic random access
memory (DRAM) such as synchronous DRAM (SDRAM)),
a static memory 306 (e.g., flash memory, static random access
memory (SRAM)), and a data storage device 316, which
communicate with each other via a bus 308.

Processor 302 represents one or more general-purpose pro-
cessing devices such as a microprocessor, central processing
unit, or the like. More particularly, the processor 302 may be
a complex instruction set computing (CISC) microprocessor,
reduced instruction set computing (RISC) microprocessor,
very long instruction word (VLIW) microprocessor, or a pro-
cessor implementing other instruction sets or processors
implementing a combination of instruction sets. The proces-
sor 302 may also be one or more special-purpose processing
devices such as an application specific integrated circuit
(ASIC), a field programmable gate array (FPGA), a digital
signal processor (DSP), network processor, or the like. The
processor 302 is configured to execute instructions 326 for
performing the operations and steps discussed herein.

The computer system 300 may further include a network
interface device 322. The computer system 300 also may
include a video display unit 310 (e.g., a liquid crystal display
(LCD) or a cathode ray tube (CRT)), an alphanumeric input
device 312 (e.g., a keyboard), a cursor control device 314
(e.g., a mouse), and a signal generation device 320 (e.g., a
speaker).

The data storage device 316 may include a computer-read-
able medium 324 on which is stored one or more sets of
instructions 326 (e.g., instructions corresponding to the
method of FIG. 3, etc.) embodying any one or more of the
methodologies or functions described herein. Instructions
326 may also reside, completely or at least partially, within
the main memory 304 and/or within the processor 302 during
execution thereof by the computer system 300, the main
memory 304 and the processor 302 also constituting com-
puter-readable media. Instructions 326 may further be trans-
mitted or received over a network via the network interface
device 322.

While the computer-readable storage medium 324 is
shown in an illustrative example to be a single medium, the
term “computer-readable storage medium” should be taken to

10

15

20

25

30

35

40

45

50

55

60

65

6

include a single medium or multiple media (e.g., a centralized
or distributed database, and/or associated caches and servers)
that store the one or more sets of instructions. The term
“computer-readable storage medium” shall also be taken to
include any medium that is capable of storing, encoding or
carrying a set of instructions for execution by the machine and
that cause the machine to perform any one or more of the
methodologies of the present invention. The term “computer-
readable storage medium” shall accordingly be taken to
include, but not be limited to, solid-state memories, optical
media, and magnetic media.

Although the operations of the methods herein are shown
and described in a particular order, the order of the operations
of'each method may be altered so that certain operations may
be performed in an inverse order or so that certain operation
may be performed, at least in part, concurrently with other
operations. In another example, instructions or sub-opera-
tions of distinct operations may be in an intermittent and/or
alternating manner.

In the foregoing description, numerous details have been
set forth. It will be apparent, however, to one skilled in the art,
that embodiments of the present disclosure may be practiced
without these specific details. In some instances, well-known
structures and devices are shown in block diagram form,
rather than in detail, in order to avoid obscuring the present
disclosure.

Some portions of the detailed descriptions are presented in
terms of algorithms and symbolic representations of opera-
tions on data bits within a computer memory. These algorith-
mic descriptions and representations are the means used by
those skilled in the data processing arts to most effectively
convey the substance of their work to others skilled in the art.
An algorithm is here, and generally, conceived to be a self-
consistent sequence of steps leading to a desired result. The
steps are those requiring physical manipulations of physical
quantities. Usually, though not necessarily, these quantities
take the form of electrical or magnetic signals capable of
being stored, transferred, combined, compared, and other-
wise manipulated. It has proven convenient at times, princi-
pally for reasons of common usage, to refer to these signals as
bits, values, elements, symbols, characters, terms, numbers,
or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise, as
apparent from the foregoing discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “creating”, “copying”, “computing”, “overwriting”, or the
like, refer to the action and processes of a computer system, or
similar electronic computing device, that manipulates and
transforms data represented as physical (electronic) quanti-
ties within the computer system’s registers and memories into
other data similarly represented as physical quantities within
the computer system memories or registers or other such
information storage, transmission or display devices.

The algorithms and displays presented herein are not inher-
ently related to any particular computer or other apparatus.
Various general purpose systems may be used with programs
in accordance with the teachings herein, or it may prove
convenient to construct more specialized apparatus to per-
form the required method steps. In addition, embodiments of
the present disclosure are not described with reference to any
particular programming language. It will be appreciated that
a variety of programming languages may be used to imple-
ment the teachings of the disclosure as described herein.

US 9,058,299 B2

7

Such a computer program may be stored in a computer
readable storage medium, such as, but not limited to, any type
of disk including floppy disks, optical disks, CD-ROMs, and
magnetic-optical disks, read-only memories (ROMs), ran-
dom access memories (RAMs), EPROMs, EEPROMs, mag-
netic or optical cards, or any type of media suitable for storing
electronic instructions, each coupled to a computer system
bus. Embodiments of the present disclosure may be provided
as a computer program product, or software, that may include
a machine-readable medium having stored thereon instruc-
tions, which may be used to program a computer system (or
other electronic devices) to perform a process according to
the present disclosure. A machine-readable medium includes
any mechanism for storing or transmitting information in a
form readable by a machine (e.g., a computer). For example,
a machine-readable (e.g., computer-readable) medium
includes a machine (e.g., a computer) readable storage
medium (e.g., read only memory (“ROM”), random access
memory (“RAM”), magnetic disk storage media, optical stor-
age media, flash memory devices, etc.), a machine (e.g., com-
puter) readable transmission medium (electrical, optical,
acoustical or other form of propagated signals (e.g., carrier
waves, infrared signals, digital signals, etc.)), etc.

It is to be understood that the above description is intended
to be illustrative, and not restrictive. Many other examples
will be apparent to those of skill in the art upon reading and
understanding the above description. The scope of the disclo-
sure should, therefore, be determined with reference to the
appended claims, along with the full scope of equivalents to
which such claims are entitled.

What is claimed is:

1. A method comprising:

issuing, by a processor, a request to create on a first storage

device a snapshot of a first disk image that is stored on
the first storage device;

issuing a request to create on the first storage device a

second disk image in view of the snapshot;
copying the snapshot on to a second storage device;
issuing a request to create on the second storage device a
third disk image in view of based on the snapshot;

issuing a request to compute a difference by the first stor-
age device between the second disk image and the snap-
shot; and

overwriting the difference on to the third disk image.

2. The method of claim 1 wherein the snapshot is created by
the first storage device.

3. The method of claim 2, wherein when the second storage
device does not support native snapshotting, the copying of
the snapshot on to the second storage device comprises cre-
ating, by the processor, a structure on the second storage
device.

4. The method of claim 3 wherein the structure is a Quick
EMUIlator (QEMU) Copy On Write structure.

5. The method of claim 2, wherein when the second storage
device supports native snapshotting, the copying of the snap-
shot on to the second storage device comprises creating a
native snapshot of the first disk image on the second storage
device.

6. The method of claim 1 wherein the snapshot is created by
the processor.

7. The method of claim 1 wherein the first disk image is a
virtual disk of a virtual machine.

20

30

35

40

45

50

55

60

8

8. An apparatus comprising:

an interface device to connect a processor to one or more

storage devices; and

the processor coupled to the interface device, to:

create on a first storage device of the one or more storage

devices, via the interface device, a snapshot of a first disk
image that is stored on the first storage device;

create on the first storage device, via the interface device, a

second disk image in view of the snapshot;

copy, via the interface device, the snapshot on to a second

storage device;
create on the second storage device, via the interface
device, a third disk image in view of the snapshot;

issue a request to compute a difference by the first storage
device between the second disk image and the snapshot;
and

overwrite, via the interface device, the difference on to the

third disk image.

9. The apparatus of claim 8, wherein when the second
storage device does not support native snapshotting, the copy-
ing of the snapshot on to the second storage device comprises
creating a structure on the second storage device.

10. The apparatus of claim 9 wherein the structure is a
Quick EMUlator (QEMU) Copy On Write structure.

11. The apparatus of claim 8, wherein when the second
storage device supports native snapshotting, the copying of
the snapshot on to the second storage device comprises cre-
ating a native snapshot of the first disk image on the second
storage device.

12. A non-transitory computer readable storage medium,
having instructions stored therein, which when executed,
cause a processor to:

issue a request to create on a first storage device a snapshot

of a first disk image that is stored on the first storage
device;

issue a request to create on the first storage device a second

disk image in view of based on the snapshot;

copy the snapshot on to a second storage device;

issue arequest to create on the second storage device a third

disk image in view of the snapshot;

issue a request to compute a difference by the first storage

device between the second disk image and the snapshot;
and

overwrite the difference on to the third disk image.

13. The non-transitory computer readable storage medium
of claim 12 wherein the first disk image is a virtual disk of a
virtual machine.

14. The non-transitory computer readable storage medium
of'claim 12 wherein the snapshot is created by the first storage
device.

15. The non-transitory computer readable storage medium
of claim 14, wherein when the second storage device does not
support native snapshotting, the instructions to copy the snap-
shot on to the second storage device comprises creating a
structure on the second storage device.

16. The non-transitory computer readable storage medium
of'claim 14, wherein when the second storage device supports
native snapshotting, the instructions to copy the snapshot on
to the second storage device comprises creating a native snap-
shot of the first disk image on the second storage device.

17. The non-transitory computer readable storage medium
of claim 12 wherein the snapshot is created by the processor.

#* #* #* #* #*

